Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

نویسندگان

  • Shengshi Pang
  • Andrew N. Jordan
چکیده

Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Nonlinear metrology with a quantum interface

We describe nonlinear quantum atom–light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in 87Rb ensembles. With these Hamiltonians, metrologically relevant ato...

متن کامل

Quantum metrology with mixed states: When recovering lost information is better than never losing it

Quantum-enhanced metrology can be achieved by entangling a probe with an auxiliary system, passing the probe through an interferometer, and subsequently making measurements on both the probe and auxiliary system. Conceptually, this corresponds to performing metrology with the purification of a (mixed) probe state. We demonstrate via the quantum Fisher information how to design mixed states whos...

متن کامل

Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin ...

متن کامل

Quantum metrology with unitary parametrization processes

Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017